
Executive Summary

1

Security Audit Report

Threema 2019

Fabian Ising, M.Sc.,

Damian Poddebniak, M.Sc.,

Prof. Dr. Sebastian Schinzel.

Date: 2019-03-28

Executive Summary

2

Table of Contents

Executive Summary

1. Introduction --- 4

2. Context and Scope -- 5

3. Findings -- 6

Appendix A: Detailed Findings -- 7

Detailed Findings Android App 7

Detailed Findings iOS App 11

Detailed Findings Threema Safe 12

Appendix B: Applied Test Cases -- 13

Applied Test Cases Android App 13

Applied Test Cases iOS App 23

Executive Summary

3

Executive Summary
This report describes the results of a thorough independent code audit of the Threema apps for iOS

and Android that was performed by the IT Security group at Münster University of Applied Sciences

headed by Prof. Dr. Sebastian Schinzel. In the course of the code review, Threema provided full

access to the source code of the Android and iOS apps and supported the researchers in regular

meetings.

Both Threema apps and the Threema Safe feature successfully passed the assessment and the audit

revealed no deviations from the specifications published in the Threema Cryptography Whitepaper.

Overall, no high risk or critical vulnerabilities were discovered in Threema Android, iOS and Threema

Safe.

Several low to medium risk issues were identified by the examiners and Threema addressed them

quickly. They are no longer present in current versions of the apps.

In summary, Threema performs as specified in the published documentation and its security and

privacy features are intact and effective.

1. Introduction

4

1. Introduction

“Threema: The messenger that puts security and privacy first.”

Threema is an encrypted messenger produced by the Swiss company Threema GmbH. It offers end-

to-end encrypted chats, group chats and calls. Threema’s product line focuses on privacy: neither a

phone number nor an email address is required to register or use the apps. Furthermore, it claims

that it generates as little data on servers as possible and to delete messages from servers as soon

as they were picked up.

Threema GmbH has approached the IT security group at Münster University of Applied Sciences to

perform an independent review of the code and architecture of its apps and particularly evaluate the

security of its newly implemented Threema Safe cloud backup feature.

2. Context and Scope

5

2. Context and Scope

The goal of this audit was a thorough third-party examination of the source code of the Threema apps

on both iOS and Android for possible issues that could affect the security or the privacy of its users

and to check the validity of Threema’s public claims stated in the Threema Cryptography Whitepaper1.

The audit was performed during the period from October 2018 to January 2019 and took 22 person

days. Any live testing was done using the production Threema apps downloaded from the Google

and Apple app stores.

The scope of the audit was set to Threema Android version 3.54 and iOS version 3.0.9 and the An-

droid implementation of Threema Safe. The Threema server code was out of scope.

Threema provided remote access to an isolated computer within the Threema network that had cop-

ies of the Threema Android and iOS apps’ source code. The Threema Android source repository also

contains the code for Threema Safe on Android.

1 https://threema.ch/press-files/cryptography_whitepaper.pdf (last accessed on 2019-01-23).

https://threema.ch/press-files/cryptography_whitepaper.pdf

3. Findings

6

3. Findings

The audit revealed no high risk or critical vulnerabilities in Threema Android, iOS and Threema Safe.

The appendix of this report lists an excerpt from the test cases that the ITS group applied, but that

did not reveal findings. This list and the fact that most findings were merely low risk issues or infor-

mational notes is a sign for the overall good quality and high security standard of the analyzed apps.

The Threema developers were very responsive and open to the suggestions of the ITS group and

mostly provided fixes within hours or a few days. All medium and low risk findings were fixed in

Threema Android version 3.62 and Threema iOS version 4.1.

The audit revealed two medium risk vulnerabilities: A malicious Android app could trick the Threema

app to send sensitive files such as the Threema private key to another Threema user. However, the

victim needs to explicitly choose the receiving Threema user, requiring a component of social engi-

neering to be practically exploited. Furthermore, parts of the Threema Safe password were written to

a log file specific to the Threema Android app. An attacker having access to this Threema-internal log

could learn parts of the password. While this log is not accessible to other applications, it poses a risk

to reveal the password to an attacker.

Most of the findings have low risk rating or are merely informational, leaving a good overall impression

of the code. The two identified medium risk vulnerabilities do not pose a directly exploitable risk to

users but should be fixed nevertheless.

Other than that, no findings with high or critical risk rating were discovered.

While no audit can prove the complete absence of any vulnerabilities in a software, this audit left the

impression that Threema takes the security and privacy of their users very seriously. Furthermore,

the audit revealed no deviations from the Threema Cryptography Whitepaper or the claims made by

the Threema website.

The findings revealed by this audit are outlined in Appendix A. Appendix B contains an overview of

the test cases applied by the IT Security group.

Appendix A: Detailed Findings

7

Appendix A: Detailed Findings

Detailed Findings Android App

Threema-2018-android-001 Private Data Leak via Share Intents (Medium)

Threema allows sharing media to Threema contacts from other applications using share intents (an-

droid.intent.action.SEND). Upon receiving such an intent, the contact list is opened to select a recip-

ient. These intents carry a file URI that defines which file should be sent.

We found that Threema can be tricked into sharing sensitive app data using crafted file URIs, for

example the cryptographic private key in the key.dat file. This can be done from any malicious app

on the smartphone. However, an attacker cannot influence who receives the sensitive data, as the

intent opens the sharing dialog where the victim needs to choose the recipient.

Proof-of-concept

A malicious app sends an intent to share the key.dat file to the Threema app:

Intent sharingIntent = new Intent(android.content.Intent.ACTION_SEND);
sharingIntent.putExtra(Intent.EXTRA_STREAM,
 Uri.parse("file:///data/data/ch.threema.app/key.dat"));
sharingIntent.setType("*/*");
this.startActivity(sharingIntent);

This prompts the victim to send this file to a Threema contact. The attacker needs to convince the

victim to send the file to the attacker. This can also be triggered by sending the same intent from the

adb shell:

$ am start -a "android.intent.action.SEND"

 --eu "android.intent.extra.STREAM"

 "file:///data/data/ch.threema.app/files/key.dat"

 -t "/"

Recommendation

Threema should filter intent URIs to prevent leaking sensitive data.

Threema-2018-android-002 Leak of GUI elements when PIN lock is active (Low)

Threema allows the user to set an access PIN to access the Threema app. This prevents a malicious

user with access to the unlocked Android phone to access Threema. Users need to enter the PIN to

access the Threema app.

We found that when using a PIN lock for Threema, the last used activity containing GUI elements is

shown as a screenshot under recent activities. This may leak sensitive information to an attacker who

has physical access to the unlocked smartphone, but who does not know the PIN.

This can be mitigated using the setting to hide thumbnails in recent activities.

Appendix A: Detailed Findings

8

Proof-of-concept

Activate the app protection PIN in the Threema app. Then open a chat with sensitive information and

close the app. Once the app is locked, open the recent activities menu and scroll to the Threema app.

The screenshot with the last opened sensitive chat is shown, even though Threema is locked with a

PIN.

Recommendation

We recommend to disable the previews in recent activities in case the PIN lock is activated. Alterna-

tively, the user should be warned when activating the PIN lock that the recent activities may still leak

information to attackers not knowing the PIN.

Threema-2018-android-003 Leak of available contacts when PIN lock is active (In-

formational)

Threema allows the user to set an access PIN to access the Threema app. This prevents a malicious

user with access to the unlocked Android phone to access Threema. Users need to enter the PIN to

access the Threema app.

We found that when using a PIN lock for Threema, opening threema://add?id=[id] for a Threema [id]

that is already in the contact list shows a toast message “ID already in contacts” which allows an

attacker with physical access to an unlocked phone to enumerate the contact list.

Note that if the contact synchronization is enabled, this information would be available to a physical

attacker anyway.

Proof-of-concept

Open a Threema URL such as threema://add?id=[id] with an [id] that is in the contact list while the

Threema app protection PIN lock is active. When the toast message “ID already in contacts” appears,

then this [id] exists in the contact list.

Recommendation

We recommend blocking handling of Threema URIs when the PIN lock is engaged.

Threema-2018-android-004 Messages can be sent via Google Assistant when PIN

lock is active (Low)

Threema allows the user to set an access PIN to access the Threema app. This prevents a malicious

user with access to the unlocked Android phone to access Threema. Users need to enter the PIN to

access the Threema app.

We found that when using a PIN lock for Threema, sending messages using Google Assistant com-

mands is still possible without entering the PIN.

Appendix A: Detailed Findings

9

Proof-of-concept

Activate the Threema app protection PIN lock and wait for the PIN lock to engage. Then start Google

Assistant and say, “Send a Threema message to [contact]” and dictate a message. The message is

sent even though the user did not enter the PIN.

Recommendation

We recommend blocking Google Assistant intents when the PIN lock is engaged.

Threema-2018-android-005 Leak of ICE candidates shortly after a call (Informa-

tional)

ICE candidates and therefore IP addresses of the client that participate in calls are buffered during

calls for a short time. Even after disconnecting a call previously collected ICE candidates will be sent

to the call partner when the timeout for buffering occurs.

Proof-of-concept

Monitor the traffic during calls. Just after the call ends, any existing ICE candidates are still sent.

Recommendation

We recommend clearing the cached ICE candidates on disconnecting a call.

Threema-2018-android-006 Broadcast intent during Threema calls (Low)

When accepting a Threema call, a broadcast intent containing the Threema ID and ICE candidates

of the call partner is sent. This intent can be intercepted by any installed app on the phone, which

leaks information that a Threema call was started and potentially leaking the IP addresses and the

Threema IDs of all participants.

Proof-of-concept

Register a broadcast receiver for the intents that the Threema app sends during call initialization.

Recommendation

Remove the broadcast intent and replace it with a local broadcast manager.

Threema-2018-android-007 Vulnerable external library zip4j (Low)

The Threema app uses the external library “zip4j” in version 1.3.2. This version is vulnerable to CVE-

2018-1002202 which may allow writing arbitrary files during extraction of an attacker-controlled ar-

chive.

However, this CVE is not directly applicable here, because compressed zip archives are never ex-

tracted to the file system.

Appendix A: Detailed Findings

10

Recommendation

Threema should regularly update external libraries.

Threema-2018-android-008 Vulnerable external library slf4j (Low)

The Threema app uses the external library “slf4j” in version 1.7.24. This version is vulnerable to CVE-

2018-8088 which may allow an attacker to execute arbitrary code using a crafted XML serialized

string.

However, this CVE is not directly applicable here, because no serialized XML strings are handled.

Recommendation

Threema should regularly update external libraries.

Appendix A: Detailed Findings

11

Detailed Findings iOS App

Threema-2018-ios-001 Usage of the deprecated UIWebView (Low)

In some places, the Threema app uses UIWebView controls to simply load external websites. One

example is the Threema Support view. UIWebView controls were deprecated in iOS 8 and should not

be used anymore.

Proof-of-concept

The Threema Support is loaded externally.

Recommendation

Replace UIWebViews with WKWebViews or copy content that is now loaded from external sources

into the Threema app.

Threema-2018-ios-002 JavaScript and UniversalFileAccess allowed in UIWebView

(Low)

JavaScript and UniversalFileAccess are activated for UIWebViews.

Recommendation

Replace UIWebViews with WKWebViews.

Threema-2018-ios-003 Unrestricted WebViews (Informational)

WebViews in the license and support are not restricted to specific URLs, e.g. https://threema.ch/,

which may allow an attacker to load external pages. However, links in the WebViews cannot be

clicked and the user cannot enter URLs.

Recommendation

Replace UIWebViews with WKWebViews.

Threema-2018-ios-004 Missing public key pinning in HTTPS request (Low)

After downloading a blob from the blob servers, a client marks the blob as done so it can be deleted.

This specific HTTPS request does not use public key pinning, while all other HTTPS requests do.

This could potentially allow a powerful MITM attacker to intercept the request.

Recommendation

Change the request to use public key pinning.

https://threema.ch/

Appendix A: Detailed Findings

12

Detailed Findings Threema Safe

Threema-2018-safe-001 Password summary in log files (Medium)

In Threema Safe, when deriving a key from the user provided password using SCrypt, a summary of

the password is written to logcat logs. This summary effectively allows to reduce the possible choices

for each character of the password down to three possible candidates, which greatly reduces the

brute-force work for an attacker.

The log cannot be read by other applications, as it is written with verbosity level “verbose”.

Proof-of-concept

void log_params(JNIEnv *env, jbyteArray passwd, jbyteArray salt, jint N, jint r, jint p,

jint dkLen) {

ALOG("Parameters for native scrypt run:");

ALOG("passwd (summary): %s", get_byte_array_summary(env, passwd));

ALOG("salt (summary): %s", get_byte_array_summary(env, salt));

ALOG("N, r, p, dkLen: %d, %d, %d, %d", (int32_t) N, (int32_t) r, (int32_t) p,

(int32_t) dkLen);

}

Recommendation

Remove the log output of the password summary.

Threema-2018-safe-002 Custom SCrypt parameters (Informational)

Threema Safe uses SCrypt to derive the encryption key from the user password. SCrypt is used with

the parameters 𝑁 = 216, 𝑟 = 8, 𝑝 = 1, 𝑘𝑒𝑦𝑙𝑒𝑛𝑔𝑡ℎ = 64. However, the recommended value of N for en-

crypting sensitive files is 220. For reference, see https://www.tarsnap.com/scrypt/scrypt.pdf.

Recommendation

Threema noted that the SCrypt operation has to perform reasonably well on older Android devices.

From this viewpoint, we feel that 216 is a reasonable choice. We recommend to regularly reevaluate

the chosen SCrypt parameters given the supported mobile devices.

https://www.tarsnap.com/scrypt/scrypt.pdf

Appendix B: Applied Test Cases

13

Appendix B: Applied Test Cases

Applied Test Cases Android App

In the following we provide a list of test cases that were applied to the Threema Android app. The list

is not necessarily complete, but rather meant to show how we approached the audit.

We loosely based these testcases on the Android developer security guidelines2, the Android Secure

Coding Standards published by Carnegie Mellon University3, and the OWASP Mobile Security Test-

ing Guide4. Additionally, we considered JNI security issues presented by Gang Tan et Al.5, and JNI

tips from the Android developer guidelines6.

File permissions

For the security of sensitive files, it is necessary to choose the correct file permissions. Threema app

files are neither set to world readable (MODE_WORLD_READABLE) nor world writable

(MODE_WORLD_WRITABLE) and are therefore secure from external access.

Encryption of Local Files

To further protect sensitive files from unauthorized access they should be encrypted in storage. All

files in Threema’s private app directory are encrypted using AES256-CBC-PKCS5. The private key

is saved in the key.dat file in the private directory and can be secured using a passphrase.

Secure Content Providers

Exported content providers allow access to resources inside an Android application, potentially allow-

ing unauthorized access to sensitive files. Threema uses a single non-exported FileProvider that is

used to handle app internal file URIs and does therefore not allow access to other apps.

External Storage

Files saved in external storage can be accessed by any app. Threema does not save any sensitive

files to external storage without the user’s explicit request to do so (e.g. saving an image file to the

gallery).

2 https://developer.android.com/topic/security/ (Last accessed: 2019-02-20)

3 https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard (Last accessed: 2019-02-20)

4 https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide (Last accessed: 2019-02-20)

5 http://www.cse.psu.edu/~gxt29/papers/safejni.pdf (Last accessed: 2019-02-20)

6 https://developer.android.com/training/articles/perf-jni (Last accessed: 2019-02-20)

https://developer.android.com/topic/security/
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
http://www.cse.psu.edu/~gxt29/papers/safejni.pdf
https://developer.android.com/training/articles/perf-jni

Appendix B: Applied Test Cases

14

Permissions

Permissions are a security measure taken by Android to restrict the access to security and privacy

relevant features of a smartphone. Therefore, requesting unnecessary permissions or abusing re-

quested permission is a security problem. All permission requested by the Threema app are neces-

sary and, where possible, are requested only when needed (see Table 1).

Table 1: Permissions

Permission Description/Usage

Dangerous Permissions

CONTACTS Necessary to the access phone book.

EXTERNAL_STORAGE Used for sharing and saving shared files as well as saving backups.

ACCESS_LOCATION Used to send location messages, is requested on demand.

RECORD_AUDIO Used for Threema Calls and Voice Messages. Requested on de-
mand.

READ_PHONE_STATE Required to detect incoming regular calls during Threema calls. Re-
quests on demand.

CALL_PHONE Required to automatically hang up incoming regular calls during
Threema calls. Requested on demand.

Normal Permissions

INTERNET Needed for connection to servers.

ACCESS_NET-
WORK_STATE

Needed to check if network connection is available.

READ_SYNC_SETTINGS Used for setting up automatic phone book sync.

WRITE_SYNC_SETTINGS Used for setting up automatic phone book sync.

VIBRATE Used for notifying the user of incoming messages and calls.

WAKE_LOCK Used for keeping the phone awake during Threema Web Sessions
and other long running operations.

RECEIVE_BOOT_COM-
PLETED

Used to auto start Threema on reboot.

REQUEST_INSTALL_PACK-
AGE

Used to request installation of updates for the Threema Shop ver-
sion.

MANAGE_ACCOUNTS Used to access the address book for syncing.

AUTHENTICATE_AC-
COUNTS

Used to access the address book for syncing.

MODIFY_AUDIO_SET-
TINGS

Used to control volume during calls.

BLUETOOTH Used to communicate with Bluetooth devices during calls.

CHECK_LICENSE Used to check Google Play Store License.

INSTALL_SHORTCUT Used to create contact shortcuts in the launcher.

C2D_MESSAGE Used to receive GCM push notifications.

Dependencies

Any vulnerabilities present in the dependencies of an app are potentially present and exploitable in

the app itself. Therefore, we checked the dependencies of the Threema app using OWASP Depend-

ency Check7. Vulnerabilities were found in zip4j and slf4j, other dependencies were not found to be

vulnerable.

7 https://www.owasp.org/index.php/OWASP_Dependency_Check (Last accessed: 2019-02)

https://www.owasp.org/index.php/OWASP_Dependency_Check

Appendix B: Applied Test Cases

15

Services

Exported services can be accessed by other apps and provide functionality to them. It is therefore

necessary to protect exported services from unauthorized access. We found that Threema exports

only a small number of services, mainly necessary to synchronize the address book (see Table 2).

Table 2: Services that are explicitly available to other apps or the Android system

Service Exported Description/Usage

AutostartService False Needed to start Threema on boot.

AccountAuthenticatorService True Needed to synchronize the Threema account. An
intent-filter is implemented to only allow Ac-
countAuthenticator intents.

ContactsSyncAdapterService True Needed to synchronize the address book. An in-
tent-filter is implemented to only allow Syn-
cAdapter intents.

PassphraseService False Service for persistent Master Key locked notifica-
tion.

WidgetService False Service to display Threema content in a widget on
the home screen. Requires BIND_RE-
MOTEVIEWS permission to access.

ConnectivityChangeService False Needed to recognize disconnects and reconnects
to the internet.

RestrictBackgroundChanged-Service False Used to recognize changes background data re-
strictions.

GcmMessageListenerService False Used for push notifications. Intents are filtered to
c2dm.intent.RECEIVE.

GcmInstanceIDListenerService False Used for push notifications. Intents are filtered to
gms.iid.InstanceID.

GcmInstanceRegistrationIntentService False Used for push notifications.

RecipientChooserTargetService False Allows choosing the Threema app as a target for
intents, e.g. sharing intents. Restricted to an-
droid.service.chooser.ChooserTargetService in-
tents.

Malicious Intents

Any app that receives intents from other apps must check for malicious behavior to prevent security

problems. The Threema app uses intent-filters to filter incoming intents. While an attacker cannot

directly trigger malicious behavior via crafted intents, they can use share intents to trick users into

leaking sensitive data from the Threema app directory. Registered and exported BroadcastReceivers

and their intent-filters are shown in Table 3.

Appendix B: Applied Test Cases

16

Table 3: Broadcast receivers that are not explicitly marked as non-exported

Name Intent-Filters Description

AutostartNotify BOOT_COMPLETED Receiver to start the app
on reboot.

GcmReceiver c2dm.intent.RECEIVE,c2dm.in-
tent.REGISTRATION

Receiver for push notifica-
tions. Requires the c2dm
send permission.

Connectivity-
ChangeReceiver

- Receiver to receive An-
droid connectivity change
events.

RestrictBackground-
Change-Receiver

- Receiver to receive events
about changes to the
background data re-
strictions.

AlarmManagerBroad-
castReceiver

- Receiver to receive sched-
uled events.

WidgetProvider APPWIDGET_UPDATE Receiver to receive events
about app widgets.

UpdateReceiver MY_PACKAGE_REPLACED Receiver for app updates.

FetchMessagesBroad-
castReceiver

- Receiver to trigger fetch-
ing messages from the
Threema server.

VoipMediaButtonReceiver MEDIA_BUTTON Receiver to recognize me-
dia key actions during
Threema Calls.

PowerSaveModeReceiver POWER_SAVE_MODE_CHANGED Receiver to recognize
power save mode.

Broadcast Intents with Sensitive Information

Intents sent via Broadcast are available to all applications that register a BroadcastReceiver for this

intent. Therefore, any sensitive information sent in broadcast intents is available to malicious apps on

the smartphone. We found that Threema sends some broadcast intents disclosing potentially sensi-

tive information that can be received by any other apps (see Table 4).

Appendix B: Applied Test Cases

17

Table 4: List of Broadcast Intents

Name Action Description

Backup Complete MEDIA_SCAN-
NER_SCAN_FILES

Tells the Android media scanner
about the completed backup file.

Media File Saved MEDIA_SCAN-
NER_SCAN_FILES

Tells the Android media scanner
about a file saved to the filesys-
tem.

License Check Failed ch.threema.license_
not_allowed

Sent when the user provided li-
cense is invalid.

Update Failed ch.threema.update_
available

Sent when an update for the app
is available.

Contacts changed ch.threema.contacts_
changed

Sent when a contacts sync is fin-
ished.

Audio Device Changes ch.threema.* Sent when changes to audio set-
tings are made.

ICE Candidates Available ch.threema.* Sent when new ICE candidates
are available.

Use HTTPS Connections Only

Any data sent over an unencrypted HTTP connection is potentially available to a man-in-the-middle

attacker. Therefore, the Android security guidelines recommend using only HTTPS connections. We

found that all HTTP connections to the Threema servers are made over HTTPS.

Certificate Handling

To prevent an attacker from tricking an app into accepting a malicious certificate for a HTTPS con-

nection it is recommended to perform Certificate Authority or Public Key pinning. We found that

Threema uses CA pinning and that all certificates are validated against the Threema CA.

WebView Settings

When using Android WebViews, developers have to be careful about specific security relevant set-

tings. These include the availability of plugins, JavaScript, and file access. We found that Threema

disables plugins for all WebViews, but enables JavaScript for the support view as it is necessary

there. Furthermore, local file access is allowed for all WebViews.

Appendix B: Applied Test Cases

18

Prevent Attacker Controlled WebViews

Any intents that allow sending URIs to WebViews allow an attacker to show malicious content inside

an app and potentially allows for UI redressing, coaxing the user into supplying sensitive data to them.

However, we found that Threema does not allow intents with WebView URIs.

Logging of Sensitive Data

Logging facilitates debugging and is a useful technique for developers. However, sensitive data must

not be logged, as logs are often requested to troubleshoot crashes, etc.

We reviewed logcat calls for sensitive information and found that most logs are connection infor-

mation. Cryptographic operations are only logged to the validation log if explicitly activated by the

user.

However, we found a flaw in the native implementation of SCrypt. A so called "summary" of the user

provided password is logged in the verbose log. Other native code does not log any sensitive infor-

mation.

Restrict Access to Activities

Any activities exported to other apps pose the risk of triggering actions not permitted by the user.

Therefore, developers should take care to protect activities using sufficient intent-filters.

Threema protects accessible activities using sufficient intent-filters (see Table 5).

Appendix B: Applied Test Cases

19

Table 5: Description of Activities that have an associated intent-filter and can be called from other applications. Ac-

tivity names are simplified.

Name Intent-Filter Description

MainActivity MAIN, LAUNCHER,
MULTI_WINDOW_LAUNCHER

Main Threema activity can be
called from the launcher.

ComposeMessageActivity VIEW Allows opening the chat activ-
ity with a specific contact.
Takes a contact mime type as
input.

RecipientListActivity SEND, SEND_MULTIPLE Allows sharing to Threema.
Opens the recipients overview.
SEND accepts any MIME type
to be shared. SENDTO does
not allow sharing files directly
and is only callable from the
contacts app, launcher
shortcuts and via URI
threema://compose.

ComposeMessageActivity VIEW Allows opening the chat activ-
ity with a specific contact.
Takes a contact mime type as
input.

NotificationSettings MAIN Allows to open the notification
settings from the Android set-
tings.

MediaSettings MANAGE_NETWORK_USAGE Allows to open the data usage
settings from the Android set-
tings.

AddContactActivity VIEW Activity to add new Threema ID
to the address book. Callable
via URI threema://add.

EnterSerialActivity VIEW Activity to activate a Threema
license. Callable via URI
threema://license.

CallActivity VIEW Activity for Threema calls.
Takes a Threema contact to
call.

CallActionIntentActivity VIEW Takes a special mime type to
show the call overview.

SMSVerificationLinkActivity VIEW Activity to link a mobile number
via SMS verification. Callable
via URI threema://link mo-
bileno.

VoiceActionActivity SEND_MESSAGE_TO_CON-
TACTS

Allows Google Assistant mes-
sage in text/plain and au-
dio/wav form to be send. This
is not restricted by using a PIN
lock.

Secure Random Source

Cryptographic algorithms need cryptographically secure randomness in order to generate keys. Low

entropy sources may have catastrophic effects on cryptographic algorithms.

Appendix B: Applied Test Cases

20

Upon app initialization the standard secure random provider is replaced with a provider that reads

random bytes from /dev/urandom. This random source is used to generate all random numbers, in-

cluding cryptographic keys and nonces. For the generation of the long-term private key additional

entropy is generated by moving a finger on screen. Insecure Java/Android random providers are not

used.

Secure Random

Any time bytes are read from the secure random provider, the call blocks until enough bytes are

available.

Secure Parameters (SCrypt)

The SCrypt parameters used (N=2^16 , r=8, p=1, key_length=64) are reasonable even though they

do not match the values proposed by the SCrypt paper.

Secure Parameters (PBKDF2)

PBKDF2 is called with the hash function HMAC-SHA1, 8 bytes random salt, and 100000 iterations.

These parameters are generally regarded as secure.8

Secure Parameters (AES)

AES is always used with random or derivate 256 bit keys (PBKDF2 or SCrypt).

Secure Primitives

Standard Android implementations are used for AES-CBC with PKCS5, PBKDF2-HMAC-SHA1 (to

generate an encryption key for the master key in storage), SHA256. PBKDF2-HMAC-SHA256 is im-

plemented in Java code.

The SCrypt implementation is taken from com.lambdaworks by Will Glozer9. The database is en-

crypted using SQLCipher (AES256-CBC, HMAC-SHA1).

Zeroing Memory

Threema does not zero sensitive data in memory. However, zeroing is generally very difficult to do

reliably, especially in Java. Thus, it might not be worth the effort.

8 See for example NISTs recommendation of at least 10000 iterations https://pages.nist.gov/800-63-3/sp800-
63b.html#sec5 (Last accessed: 2019-02).
9 https://github.com/wg/scrypt (Last accessed: 2019-02)

https://pages.nist.gov/800-63-3/sp800-63b.html%23sec5
https://pages.nist.gov/800-63-3/sp800-63b.html%23sec5
https://github.com/wg/scrypt

Appendix B: Applied Test Cases

21

Caching Sensitive Information (Storage)

No data is cached explicitly in storage.

Caching Sensitive Information (Memory)

Some information is cached in memory, including avatars, image thumbnails, contacts, and ICE can-

didates. However, since these in memory caches should be inaccessible from other apps caching

these seems reasonable.

Caching Sensitive Information (Keyboard)

The keyboard cache is deactivated for input fields containing sensitive passwords, e.g. the PIN lock,

the Threema Safe password and the master key password. Additionally, users can choose to use an

incognito keyboard in the settings to prevent caching sensitive information in conversations.

Caching Sensitive Information (GUI Objects)

Last used GUI elements are cached in memory unless explicitly deactivated in the Settings. This

means that in default settings sensitive data might remain visible in Androids recent activities. This

leads to confusing behavior when using a PIN lock.

NaCl

Threema uses NaCl's reference implementation10 when possible, but provides a fallback to JNaCl11

(a pure Java implementation of NaCl). Furthermore, it uses unmodified NaCl (nacl.cr.yp.to; nacl-

20110221). Additionally, they implemented a helper function to work around an implementation detail

of NaCl, where the first 32 bytes of the message-to-be-encrypted must be 0x00. We concluded that

the helper function works as expected.

In order to call NaCl from Java, Threema wrote an JNI wrapper. We verified the NaCl Java Native

Interface for common mistakes12, and found no obvious issues. Due to the simplicity of the interface,

most common mistakes, e.g. passing unchecked `Strings`, forgotten `Release`'s, and Java privilege

violations do not apply.

Resource Allocation (JNI)

Resources `Get` via JNI must be `Released` in order to prevent memory leaks. `Get` may return

`NULL`, which must be checked to avoid a free/release of NULL.

10 http://nacl.cr.yp.to (Last accessed: 2019-02)
11 https://github.com/neilalexander/jnacl (Last accessed: 2019-02)
12 https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/JNI_OBE/JNI_OBE.html (Last accessed: 2019-02),
http://www.cse.psu.edu/~gxt29/papers/safejni.pdf, https://wiki.sei.cmu.edu/confluence/pages/viewpage.ac-
tion?pageId=87150750#Rule20.JavaNativeInterface(JNI)-Java (Last accessed: 2019-02),

https://www.youtube.com/watch?v=8HgrlqQNnpk (Last accessed: 2019-02)

http://nacl.cr.yp.to/
https://github.com/neilalexander/jnacl
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/JNI_OBE/JNI_OBE.html
http://www.cse.psu.edu/~gxt29/papers/safejni.pdf
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87150750#Rule20.JavaNativeInterface(JNI)-Java
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87150750#Rule20.JavaNativeInterface(JNI)-Java
https://www.youtube.com/watch?v=8HgrlqQNnpk%20

Appendix B: Applied Test Cases

22

This issue most often does not apply due to the usage of `GetByteArrayRegion` (as recommended).

We reviewed the remaining instances for NaCl manually and found no issues.

We found a potential NULL-dereference and a potential out-of-bounds write in the Scrypt Java Native

Interface. We did no further evaluation because Threema decided to delete the erroneous functions

completely.

Violating Access Control Rules (JNI)

C code may bypass Java's access controls, e.g. it is possible to call private functions.

Does not apply for Threema.

String Handling (JNI)

Java Strings are different from C Strings. Java Strings are guaranteed to be valid UTF-16 and are not

NULL-terminated. Erroneous C code may produce unexpected results when working with Java

Strings directly and not using MUTF-8 representation with appropriate filters when working with un-

trusted data.

Does not apply to Threema.

Exception Handling (JNI)

Most JNI functions must not be called when an exception is pending. We reviewed the NaCl and

Scrypt JNI for problematic code and found only minor issues. Especially, most return values are

checked and handled correctly.

Comparison of Object References (JNI)

Object references must only be compared via `IsSameObject()` and not via `==` or `!=`.

Does not apply to Threema.

Appendix B: Applied Test Cases

23

Applied Test Cases iOS App

In the following we provide a list of test cases that were applied to the Threema iOS app. The list is

not necessarily complete, but rather meant to show how we approached the audit.

We loosely based these testcases on the Introduction to Secure Coding Guide by Apple13, the Secure

iOS Application Development guidelines collected by Felix Gröbert14, and the OWASP Mobile Secu-

rity Testing Guide15.

Secure Random Source

Cryptographic algorithms need cryptographically secure randomness in order to generate keys. Low

entropy sources may have catastrophic effects on cryptographic algorithms.

Threema reads random data from /dev/urandom. This random source is used to generate all random

numbers, including cryptographic keys and nonces. For the generation of the long-term private key

additional entropy is generated by moving a finger on screen. Native random providers are not used.

Secure Parameters (PBKDF2)

PBKDF2 is called with the hash function HMAC-SHA256, 8 bytes random salt, and 100000 iterations.

These parameters are generally regarded as secure.16 An exception is made for zip encryption as

described below.

Secure Parameters (AES)

AES is used for encrypting conversation backups using MiniZip. It is called with a key derived via

PBKDF2-HMAC-SHA1 (iteration count 1000) as defined in the zip encryption standard AE-217. Other

AES operations are performed using random 256 Bit keys.

Secure Primitives

For encrypting zipped conversation backups, the AES and PBKDF2 implementation of Brian Gladman

is used. For identity backups the PBKDF2 Apple’s CommonCrypto implementation is used. For SHA1,

SHA256 and other AES operations Apple’s CommonCrypto implementation is used. For NaCl the

reference implementation by Daniel J. Bernstein is used.

13 https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Introduc-

tion.html (Last accessed: 2019-02)

14 https://github.com/felixgr/secure-ios-app-dev (Last accessed: 2019-02)

15 https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide (Last accessed: 2019-02)

16 See for example NISTs recommendation of at least 10000 iterations https://pages.nist.gov/800-63-3/ sp800-
63b.html#sec5 (Last accessed: 2019-02).
17 http://www.winzip.com/aes info.htm (Last accessed: 2019-02)

https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://github.com/felixgr/secure-ios-app-dev
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://pages.nist.gov/800-63-3/%20sp800-63b.html%23sec5
https://pages.nist.gov/800-63-3/%20sp800-63b.html%23sec5
http://www.winzip.com/aes%20info.htm

Appendix B: Applied Test Cases

24

Zeroing Memory

Threema does not zero sensitive data in memory. However, zeroing is generally very difficult to do

reliably especially, when keys are accessed repeatedly. Thus, we feel it might not be worth the effort.

Local Authentication

Threema implements Touch ID to prevent unauthorized access to the app. Additional protections, for

example against Jailbreaks are not implemented.

Secure Deserialization

Whenever objects are deserialized in iOS apps, developers should be careful about potentially mali-

cious data that could be supplied by an attacker. Threema deserializes all objects using NSJSONSe-

rialization, which is generally regarded secure.

Secure Handling of SQL Statements

Handwritten SQL statements manipulating an app internal database that handle user supplied input

are potentially vulnerable to SQL injections. We found that Threema does not use SQL directly but

all Database access is done via NSPersistentStoreCoordinator, which is not vulnerable to SQL injec-

tions.

Compile-Time Options

As iOS apps are often written in Objective-C, they are potentially vulnerable to issues like Memory

Corruptions and Buffer Overflows. Various compile-time options are available as countermeasures to

make attacking these vulnerabilities harder. We found that Threema enables stack smashing protec-

tion and position independent executables. Automatic reference counting is enabled for the Threema

code, but disabled for some dependencies where necessary.

Code Signing

To prevent malicious clones of an iOS app reaching the Apple App Store, an app should be signed

with a secure developer certificate. We found that Threema signs their release build using an iPhone

developer certificate.

Anti-Reversing Techniques

To prevent attackers tampering with an iOS app it is recommended to take some anti-reversing meas-

urements, for example stripping debug symbols and using a Jailbreak and debugging detection. We

found that Threema strips all debug symbols from release builds, but does not implement a Jailbreak

or debugging detection. We, however, feel this is reasonable as the checks are usually not a real help

against dedicated attackers.

Appendix B: Applied Test Cases

25

App Transport Security

Any data sent over an unencrypted HTTP connection is potentially available to a man-in-the-middle

attacker. Therefore, iOS apps by default cannot make unencrypted HTTP connections to webservers

without changing the settings of App Transport Security (ATS). We found that Threema uses ATS in

default configuration, therefore not allowing unprotected HTTP connections.

Secure HTTP Settings

iOS apps can set up HTTPS connections with debug options resulting in potentially sensitive infor-

mation like cryptographic keys to be logged. Additionally, parameters passed in HTTPS URIs might

be available at the proxy level. We found that Threema neither has debug options for HTTPS enabled

nor do they send sensitive data in HTTPS URIs.

Certificate Handling

To prevent an attacker from tricking an app into accepting a malicious certificate for a HTTPS con-

nection it is recommended to perform Certificate Authority or Public Key pinning. We found that

Threema checks all certificates using TrustKit, which is configured for public key pinning. These

checks are applied for all HTTPS connections, except for the request to mark an encrypted media

blob.

Verification of app URI calls

iOS apps can export URIs that can be called from other apps to trigger actions in the app. Developers

should take care that they do not automatically perform malicious actions upon URI calls. We found

that in Threema all actions that can be triggered via URLs are verified or the user is asked for per-

mission. See Table 6 for all available URIs.

Table 6: Threema URIs

URL Description/Usage

threema://restore Allows restoring an identity backup, only allowed during app setup.

threema://add Allows adding a new contact. Asks the user for permission. Can be de-
activated in the settings.

threema://compose Allows opening the compose dialog with a contact. Also allows sharing
images via pasteboard.

threema://link_mobileno Links a Threema identity with a mobile number using a code from the
verification SMS.

Threema://license Allows activating a Threema work license using a username and a pass-
word.

file:// Allows sharing a file via Threema.

Verification of outgoing URLs in WebViews

WebViews in iOS apps should be restricted to a subset of URLs to prevent displaying malicious con-

tent inside the app. We found that WebViews in Threema are not restricted to specific URLs, but don’t

allow clicking links or browsing the web. However, onclick handlers and redirects are still possible.

Appendix B: Applied Test Cases

26

Prevent XSS in WebViews

Whenever a WebView displays attacker controlled data cross-site scripting vulnerabilities are possi-

ble. To prevent this, developers should restrict JavaScript usage and file access on WebViews. We

found that Threema WebViews do neither.

Avoid HTML Previews

To prevent the executing of malicious local or remote content in iOS apps it is recommended to avoid

HTML previews for content. We found that Threema does not support HTML previews.

Disable Autocorrect for Sensitive Data Fields

To prevent sensitive data (e.g. passwords) from leaking while being supplied by the user, auto correct

should be disabled on sensitive input fields. We found that in Threema autocorrect is disabled for all

sensitive input fields, including password, ID, E-mail and the license username fields.

Secure Pasteboard Handling

Any data shared using pasteboards is potentially available to other apps. Developers should, there-

fore, be careful about supplying sensitive information in pasteboards. We found that Threema uses

the global pasteboard only to share information with other apps and does not implement its own

pasteboard.

Secure Keychain Permissions

Secrets saved in the iOS keychain should use the minimum possible permission to prevent abuse.

We found that the Threema identity key is only accessible on the device it was created on after it was

first unlocked. An identity backup is available whenever the keychain is unlocked.

Secure File Storage

Files stored on the storage might potentially be available to an attacker if they are not sufficiently

secured. We found that all files are sufficiently protected as Threema uses the NSFileProtection-

CompleteUntilFirstUserAuthentication permission.

Secure Temporary Files

Temporary files should only be created in the secure temporary NSTemporaryDirectory to secure

them from attackers. We found that Threema uses this directory for temporary files.

Appendix B: Applied Test Cases

27

Secure Backups

App data saved in backups might potentially fall in the hands of an attacker and should therefore be

sufficiently secured. The Threema database can be excluded from backups. Keychain items are not

synchronizable and therefore are not available in iCloud backups. They can however be restored

using an iTunes backup although they are only decryptable on the same device. User settings are

included in a backup.

Memory Leaks

As iOS apps are often written in Objective-C, they are potentially vulnerable to issues like Memory

Leaks. Therefore, developers should take care to free allocated memory upon deallocation. We found

that allocated buffers (mainly for random bytes) in Threema are handled by NSData and are freed

upon deallocation. Also allocated buffers are freed upon exceptions.

Memory Corruption Format Strings

As iOS apps are often written in Objective-C, they are potentially vulnerable to issues like Memory

Corruption via format strings. However, we found no vulnerable format strings in Threema.

Dependencies

Any vulnerabilities present in the dependencies of an app are potentially present and exploitable in

the app itself. Therefore, we checked the dependencies of the Threema app manually for vulnerabil-

ities. None of the used dependencies were found vulnerable.

